Ensembl Variation - Phenotype and disease annotations

Phenotypes are imported from a number of external sources and displayed in Ensembl. On top of these, for human we display the clinical significance of variants, and map phenotype terms using ontologies.

Clinical significance

See below the list of the clinical significance terms you can find in the human Ensembl Variation database:

IconValueClinVar exampleDGVa example
affectsrs324420nsv4684084
associationrs6681nsv3870545
benignrs677nsv1067800
likely benignrs665nsv529995
confers sensitivityrs6478108-
drug responsers6025nsv3875906
pathogenicrs5082esv2830397
pathogenic low penetrancers6025nsv7093359
likely pathogenicrs381418esv1791726
likely pathogenic low penetrancers563816801nsv6314862
protectivers1050501nsv1398576
established risk allelers1801581-
likely risk allelers10754555-
risk factorrs5174nsv3871638
not providedrs4870nsv984836
otherrs5275nsv4769276
uncertain risk allelers650616-
uncertain significancers1205esv2830426

Further explanations about the clinical significance terms are available on the ClinVar website.

ClinVar rating

We use the ClinVar "four-star" rating system to indicate the quality of classification/validation of the variant:

RatingDescriptionExample
greygreygreygrey not classified by submitter rs2139165606
goldgreygreygrey classified by single submitter rs2136571005
goldgoldgreygrey classified by multiple submitters rs2148153587
goldgoldgoldgrey reviewed by expert panel rs1566906506
goldgoldgoldgold practice guideline rs17884712


Phenotype classes

We group phenotype terms into the classes below:

Classes Example phenotypes Example variants
trait 'Inborn genetic diseases' from ClinVar rs376574181
tumour 'Lung tumour' from COSMIC COSV67207411
non_specified 'not specified' from ClinVar rs751840065

These can be used to retrieve corresponding subsets of phenotype annotations for genes or in a specific region via the REST API. Phenotype pages are displayed for all classes except 'non_specified' class.



Phenotype/disease ontologies

We import ontology terms related to phenotypes, traits and diseases from a variety of sources using an automated process. Ontologies used are:

OntologyVersion/Downloaded
CMO Clinical Measurement Ontology
EFO Experimental Factor Ontology 3.76.0
HPO Human Phenotype Ontology 2025-01-16
MP Mammalian Phenotype Ontology 2025-01-30
VT Vertebrate Trait Ontology 2024-05-15

Descriptions are linked to ontology terms using:

  • Mappings provided by association data sources such as Orphanet, the NHGRI-EBI GWAS catalog and ClinVar
  • Annotations of OMIM terms created by HPO
  • Annotations of OMIM terms created by Orphanet
  • Ontology LookUp Service searches of full or truncated descriptions for exact matches to terms or synomyms
  • Zooma searches of annotations curated by the European Variation Archive team

References

  • Sebastian Köhler, Sandra C Doelken, Christopher J. Mungall, Sebastian Bauer, Helen V. Firth, Isabelle Bailleul-Forestier, Graeme C. M. Black, Danielle L. Brown, Michael Brudno, Jennifer Campbell, David R. FitzPatrick, Janan T. Eppig, Andrew P. Jackson, Kathleen Freson, Marta Girdea, Ingo Helbig, Jane A. Hurst, Johanna Jähn, Laird G. Jackson, Anne M. Kelly, David H. Ledbetter, Sahar Mansour, Christa L. Martin, Celia Moss, Andrew Mumford, Willem H. Ouwehand, Soo-Mi Park, Erin Rooney Riggs, Richard H. Scott, Sanjay Sisodiya, Steven Van Vooren, Ronald J. Wapner, Andrew O. M. Wilkie, Caroline F. Wright, Anneke T. Vulto-van Silfhout, Nicole de Leeuw, Bert B. A. de Vries, Nicole L. Washingthon, Cynthia L. Smith, Monte Westerfield, Paul Schofield, Barbara J. Ruef, Georgios V. Gkoutos, Melissa Haendel, Damian Smedley, Suzanna E. Lewis, and Peter N. Robinson
    The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data
    Nucl. Acids Res. (1 January 2014) 42 (D1): D966-D974
    doi:10.1093/nar/gkt1026

  • Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N, Zhukova, A, Brazma A, Parkinson H.
    Modeling sample variables with an Experimental Factor Ontology
    Bioinformatics (2010) 26 (8): 1112-1118
    doi:10.1093/bioinformatics